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R E C E P T I V I T Y  OF T H E  BOUN.r:'A, R Y  L A Y E R  O N  A F L A T  P L A T E  

W I T H  A B L U N T E D  L E A D I N G  E D G E  T O  S T E A D Y  N O N U N I F O R M I T Y  

OF T H E  F R E E  S T R E A M  

M. V.  U s t i n o v  UDC 532.517 

The flow past a fiat plate with a blunted leading edge by a flow of a viscous incompressible 
fluid with a small spanwise-periodic, steady nonuniforvnity of  the velocity pTvfile is considered. 
Such a flow simulates the interaction of one type of vortex disturbances of a turbulent external 
flow with the boundary layer. The solution obtained predicts generation of strong disturbances 
in the boundaw layer, which are sir~:.,:,r to the streaky structure observed in the case of high 
free-stream t'ttrbulenee. It is shown that the boundary-layer flow on blunted bodies is more 
sensitive to vortex disturbances than on a plate with a sharp leading edge. 

I n t r o d u c t i o n .  In the case of a high level of free-stream turbulence (0.1% < ~t < 5%). the laminar- 
turbulent transitiou occurs without fornmtion of the Tolhnien-Schlichting waves [1]. Instead of them. the 
growth of low-frequency perturbations of velocity is observed. Flow visualization shows that these 1)erturba- 
tions are narrow streaks exteuded in the streamwise direction [2]. It is ~ussu,ned that  these streaky structures 
appear as a resul: ~ 1)enetration of ~x)rtices from the external flow into the boundary layer and their sub- 
sequent amplificat~,,a in it. Th~;refore, the solution of the t)rot)lem of recel)tivity of the 1)oundary layer to 
vortex disturbances is an important component  in developing the theory of the laminar-turbulent transition 
in the case of an elevated level of t'ree-stream turbulence. 

This problem ha.s been sol~vd only for the particular case of interaction of streamwise vortices with 
tile boundary layer on a fiat plate [3, 4]. This is tile siml)lest case, since tim free-stream vorticity field is not 
distorted by tile flow near the leading edge. However, such a deformation involves a(htitional amplification 
of pertltrbations due to the exi)ansion of vortex filaments [5]. Tile gTeatest amI)lification is experienced 
by I), :, bations whose vortex lines intersect tile lea(ting edge. Hence, these perturbations (and not tile 
streamwise vortices) should generate the s treaky structure most effectively. It is shown in [5] that vorticity 
perpendicular to the leading edge (or nonuniformity of tile velocity profile in the spanwise (tirectit)tt) can 
even lead to a local separation of tile boundary  layer. The analysis [5] was made for large-scale disturbances 
of small but finite amplitu(le. Under tim assumt)tions accel)ted, the development of disturbances is actually 
inviscid, and tile governing influence is exerted by nonlinear effects. However, it follows from the exl)erimental 
results of XNestin et al. [6] that  the transverse size of the streaky structure is small, and viscosity plays a 
significant role in the development of this structure.  In addition, the aml)litude of perturbations observed in 
[6] is small for manif'estation of strong nonlinear effects. In the I)resent work, the I)robleIn of interaction of a 
nonuniform flow with the boundary layer is solved under tile folh)wing ~lssumptions: the characteristic size of 
disturban('es is assumed to be of the order of the 1)oun(lary-layer thickness and the evolution of (listurbances 
is linear in terms of their amplitude. 
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1.  B a s i c  A s s u m p t i o n s .  We consider a viscous incompressible fluid flow past a flat plate with a 

blunted leading edge. The characteristic size of the leading-edge bluntness is denoted  by b'. (Hereinafter 
the dimensional quantities are primed, and the dimensionless quantities are not.)  To describe the flow, we 
introduce a Cartesian coordinate system whose axes Oar, 09, and Oz are directed along the flow, parallel to 
the leading edge, and normal to the plate surface. The origin is located in such a way that the plane xOy 
coincides with the Ut)l)er surface of the plate, and the leading edge corresponds to x '  = 0 (Fig. 1). The  free 
s t ream is assunied to l)e weakly non|miform in the st)anwise direction. The streamwise con|ponent of velocity 
u'  in the free stream is given 1W 

u' = u~(l + ~ e -~'~" cos (27r! / /A')) .  (I.I) 
where ,u,~ is the fl~ee-stream velocity, A' is the perio<l of nonuniforniity, s is the small I)arameter equal to 
the amt)litude of nonuniforniity for :r' = 0, the parameter a '  = 47r2u'/(u':,cA '2) describes the (tamping of the 
nonuniii)rniity due to the action of viscosity, and u' is the kinematic viscosity. T h e  transverse (v') and vertical 
(w') compon(,nts of the free-stream velocity are equal to z(,ro. In ad(lition, the Reynolds numl)er biased on the 
period of nonuniformity Re = uoo.,V/u' is assumed to be rather large. Then the expression tbr the free-stream 
velocity (1.1) is the solution of the Navier-Stokes equations with accuracy to snlall quantities of order s/Re. 
To siniplify the t)roblcm, we assunm that the period of nonuniforniity ~' is small as comI)ared to the bhmtness 
radius b'. In contrast to [5]', we confine ourselves to solving the linear (in terms of e) probleni on a weakly 
nonuniform flow past a flat plate. 

The velocity comI)onents an(l the pressure p' are rel)resented as 
l .! l )  . ' c ! . w = , , ~ [ u ~ , ( : , .  + ~,,(:~.', : ' )  c o s  ( 2 ~ ; / / ~ ' ) ] .  ,,' = uzc [_ u(x ,  : ' )  sit, (27ry'/A')] 

w' ' ~" ' + ~ , , , ( T ' . = ' ) ~ o s  ( z ~ v ' / A ' ) ] ,  p' =') = p ~ [ P ~ ( ~ . .  + ~p(x' ,  ~ ) c o s  ( 2 ~ y / ~  )], = , ~ [ u ~ ( . . : ' )  , ,2 , , , , 

where J is the density; the dimensionless velocity conq)onents Ub and lVb and the pressure Pb correspond to a 
uniform flow past a flat Plate, whereas u, v, w, and p corresI)on(t to perturbat ions generated t)y nonuniformity. 
T h e  evolution of perturbations is described by the Navier-Stokes equations linearized relative to the main 
flow with no-slip boundary conditions at the plate surfi~ce. The free-stream boundary  conditions follow from 
(1.1): u --* e -~'x' and c. w -+ 0 as x'  ~ - o c .  

2. S o l u t i o n  at  t he  In i t i a l  S e c t i o n  (x'/.M << Re) .  We seek the solution of the problem by the 
nmtho(1 of matching of asynq)totic solutions. The  flow field is divided into two regions shown schematically 
in Fig. 1. Region I is the vicinity of the leading edge with the characteristic size b ~ (x ~ ~ b ~ an(l z ~ ~ b'). The  
flow in this region is inviscid outsi(le a thin boundary layer and is described by linearized Euler equations 
with no-slip conditions on the wall. Because of the small size of region I, we may ignore the lengthwise 
damping of nonunifbrmity and consi(ler the free-stream 1)oundary conditions in the form u ---, 1 and v, w ~ 0 
as x ' / b '  ~ - c o .  

The problem in region I in a similar formulation was solved in [5]. In what  follows, we need only the 
asymptotic  betmvior of this solution near the wall and at a large disbmce downst ream of the leading edge: 
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The  constant  a ~ 1 in the expression for v depends on the shat)e of leading-edge bluntness.  

Viscous terms become significant in region II of length :r ~ ~ A~Re. The  vert ical  size of this region 
z' ~ A ~ is determined by the distance from the wall at which the displacing action of the boundary layer on 
velocity perturbations is manifested. In region II, we introduce tile (limensionless coordinates  X = x~/(A~Re) 
and Z = z ' /A ' .  For X << 1, we ('an identi(v two subregions (Fig. 1): subregion II' (boundary  layer near the 
wall in which Z ~ x / ~  and z' ~ ~ and the flow is viscous) and subregion II"  (inviscid subregion in 
which Z >> v/X and z ~ ~ A'). The boundary conditions for X = 0 in inviscid subregion IY' are obtained by 
matching with the asymptotic solution for x '  ~ ec in the vMnity of the leading edge: 

u(0, z) = 1, v((l,z) = A, w(0, z) = -2" zAZ .  (2.1) 

Here A = (2zrb'/(A'a)) In (bt/A ') >> 1. We note that  it was assumed that U/A'  >> 1 in deriving the condition 
for v. The  t)oundary conditions for X = 0 in the boundary layer (sut)region II') should be found from the 
solution of the boundary-layer problem in region I. However, a certain solution will be found there, which 
agrees with the boundary conditions in subregion II" for X --~ 0. This approach is justified if we assume tha t  
the per turbat ions introduced into the boundary  layer in the vicinity of the leading edge decay at a distance 

of order  b' from it. 
Because of the lhmaritv, the solution of the problem for velocity per turbat ions  in region II may be 

represented as a sum of the solutions of two problems: (1) with nonzero conditions for u and zero conditions 
for v and w for X = 0; (2) with zero conditions for u and nonzero conditions for the remaining c,: ponen t s  
of velocity. The solution of the first problem describes the decay of the initial nonuniformity  of the velocity 
profile clue to viscous dissiI)ation. The value of velocity perturbations remains of  the  order  of unity tbr all 
X.  T h e  solution of the second prot)lenl, as will be shown below, describes the increase in the streamwise 
component  of velocity up to a value of order Re for X ~ Re. For large X,  the to ta l  perturbations are 
de termined by solving the latter 1)rol)lem with nonzero conditions for v and w. This  t)roblem ~s considered 
below. Its solution in region II is sought in the form 

u,= A R e U ( X , Z ) ,  v = A V ( X , Z ) ,  w = A I I ' ( X . Z ) ,  p =  ( A / R e ) P ( X , Z ) ,  (2.2) 

where the functions U, V, IV, an(l P are universal, i.e., independent of tile shape of tile leading edge, Re, and 
other  parmneters.  Substituting these expressions into the linearized Navier-Stokes equations and rejecting 
the te rms of order 1 /Re 2, we ol)tain the following system: 

OU OUo OU OUo O"-U ,, 
Go -5--x + u + - 5 2  + -o-2- i v  - o z - '  

0 2 V .) 
OV 0V -27rP  + - -  - 4zr-V, (2.3) 

U0 0-X + It~ OZ = OZ'-' 

OIV OIVo I OIV ?) II"0 OP O'~IV OU OIV Uo-:sz+ u+I i)-b-f+-=j2-tv- 0--2+ 4  li: 
In deriving (2.3), we assunmd that the nmin flow in region II corresponds to the Blasius boundary 

laver 

v b  = u, , ( , i ) ,  = I f 0 ( , / ) ,  = o , Go Wo = - f ) ,  

where the fimction f is fomld fi'om the 1)oundary-~xlue prol)lem 

f "  + (1~2)f  f "  = O. f(O) = .f'(O) = O, f ' ( v c )  = 1. 

Z 

'q = v/- ~ , 

We consider tile solution of (2.3) in subregion II". In this subregion, because of the siml)le form of 
the main flow [Ub = 1, IV/, = Wr v/'X), and Woo = (1/2) lira ( q f '  - f)]  tile equat ions of motion are 

significantly simplified and acquire the following form: 
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OU [Voo OU 02U 47r2U, OV I~Voo OV 02V 
O X  + ~ a z  - o z  ~ ~ + ~ o z  - - 2 7 r P  + OZ--- ~ - 47r2V. 

IVoo 0IV OP 02IV 47r214 ~ OU 01V O W  1 Woo U + . . . .  
O X  2 X3/~  v/-X OZ OZ + OZ 2 ~ + 2~rV + ~ = O. 

The  initial conditions for X = 0 follow from (2.1): 

U(O,Z)  : O, V ( O , Z )  = l,  W ( O , Z )  = - 2 ~ Z .  

(2.4) 

The  boundary conditions for Z ~ 0 are unknown a pT'ioT'i and should be found by matching with tile solution 
in viscous subregion IY. 

To find a solution of (2.4) satisfying (2.5), we assuine that U - 0. Then, eliminating tile pressure from 
the second and third equations of (2.4) and using tile continuity equation for expressing V in terms of W, 
we ot)tain tile equation for the verti('al (.omponent of veh)('ity: 

OB Woo OB 0"13 4a_2B, B 02II" - -  + . . . . . .  47r2 ~Tv] 
OX ~ OZ OZ 2 OZ'-' 

The  solution of tiffs equat!on satisi)'ing (2.5) and the boundary condition on tile wall IV(X, 0) = G ( X )  

specified l)y all arbi trary function G ( X )  h~s the forln 

W = G ( X ) e  -2~z  - 2~r(Z - 2 I I ] )0v~)e- t~2x .  (2.6) 

Tile necessity of satist}Ang conditions (2.5) iml)oses tile linfitation G(0) -- 0 on the function G(X) ,  which 
describes tile (lisplacing action of the 1)omldary layer. 

Having the exI)ression for IV, we can easily obtain a solution for V and P in subregion II": 

1 dG Ill)0 ~ - ' , ,rz 
V = - G ( X ) e  -2rrz + e -4'r2"~', P = 2~r d X  + --v~--X) e " . (2.7) 

We now find tile solution at the initial section of subregion II'. Tile boundary  conditions at its external  
boundary  tbllow froln (2.6) and (2.7) and have the following form for X << 1: 

Z / , ~ ' X  --..zc: U --* 0, V --* 1, W ---, -2rr(1 + G ( X ) ) Z  + 4,'rlt])0v/~. (2.8) 

The sohltion [br X << t in subregion II' is sought ill tile form 

U = 27rXg'(q),  V = l'(q), It" = 2~'-X[(t l /2).q'( t l)  - (3/2).q(q) - / ( t / ) ] ,  P = O(1/V'-X),  (2.9) 

where the fimctions 9 and l, which describe the profiles of perturl)ations of the streanlwise and transverse 
components of velocity, depend on the self-similar variable q = Z / v ~ .  Subst i tut ion of expressions (2.9) into 
the initial equations (2.3) and taking into account the terms of the least orders ill X lead to bomldary-value 

problems for ordinary differential equations for 1 and 9: 
l "  + ( 1 / 2 ) f l "  = O, t(O) = l'(O) = O, l'(cxz) = 1, 
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g" + ( 1 / 2 ) f g "  - f ' g '  + ( 3 / 2 ) f ' g  = - f " l ,  .q(O) = g'(O) = g ( ~ c )  ----- O. 

We can easily see that  l(TI) = f(rl) and g(r]) = ( r l f  t - f ) / 2  are solutions of these problems. The solution 
ob ta ined  is illustrated in Fig. 2. which shows the profiles of perturbations of the streamwise u and transverse 
v components  of velocity normalized t~: i~,eir maximum values. 

The  solution for inviscid sul)region II" contains an (mknown function G ( X ) ,  which describes the dis- 
placing action of the boundary layer. Its form for X -~ 0 is obtained by comparing the expression for IV 
(2.8) with tim a,symptotic behavior of the solution for the vertical component of velocity in the boundary  

layer (2.9): G ( X )  = -3~vlV00v~ + O ( X )  as X --* O. 

3. S o lu t i on  in t h e  M a i n  P a r t  o f  R e g i o n  I I .  VVe seek the numerical solution of the complete system 
(2.3) fur X ~ 1. These are equations of the parabolic type, and they require initial conditions in a certain 

cross section X = X0 and boundary conditions on the wall and for Z --~ ~c. For formulat ion of the boundary  
conditions, we need a solution uniformly suitable in terms of Z or a composite solution in the initial par t  of 
region II. It is found by a standard procedure [7] and coincides with (2.9) fi)r U and V and has the following 

form for W: 

W ( X ,  Z )  = 2r rA~Y[ ( r l / 2 )g ' ( ' , l )  - ( 3 /2 )g ( , I )  - f ( ' l )  - (3/2)W00(e -2~z - 1) - 37rW00Z]. (3.1) 

Since the comI)lete system (2.3) is also x~fiid in the inviscid part  of the region considered, the bound- 
ary conditions for it as Z --* cc are taken as the corresponding linfit of the solution of (2.6) and (2.7) in 

subregion II": 

Z --~ ~ :  U ( X ,  Z )  --, 0. V ( X ,  Z )  ~ e -4rr2X, IV(X, Z) --, -27r(Z - 2IV00v/X)e -4rr2X. 

These  boundary conditions, the no-slip conditions on the wall U ( X ,  0) = V ( X ,  O) = W ( X ,  0) = 0, and the 
initial conditions (2.9) for U and V and (3.1) for W in the cross section X = X0 form a complete s ta tement  
of the  problem for system (2.3). Note that this system does not contain any parameters;  hence, the solutions 
of this prot)lem U, V, IV, and P are really universal fun(-tions of X and Z. and the form of the solution of 

(2.2) may  be interI)reted as the law of similarity. 
To solve system (2.3), we eliminate the t)ressure by adding the derivative with respect to Z in the 

second equation with the third one imfltiplied by 4rr 2. In the resultant equation, we express the transverse 
component  of velocity V in terms of U and W using the continuity equation. We replace the arising te rm 
U o O 2 U / O X  2 containing the second derivative with respect to X by the expression found from the first equat ion 
of momentum differentiated with respect to X.  As a result, we obtain the following equat ion fbr U and W: 

OB OB OUO B_ 0 (02Uo W) O:~U~ 
uo g-2 + o z  o x  oz"- 

~176 
O X  \ O Z  2 + 

o (OUo o u  
- -  w - 2 -5-5 5 -  2 -g-s ) 

03U~ U = 0213 ") 
O X  2 0 Z  ~ - 4 ~ - B .  B - O"I~V - -  OZ---~2 47r2IV. 

This  equation, the first equation of momentum, and tim corresponding boundary  and initial conditions 
form the prol)lcm for U and If', which was solved nmneri('ally using the marching method.  The derivatives 
with respe(.t to X were al)proxinlated by nn implicit second-order difference scheme. The  discretization of 
the equations in terms of Z was I)erformed })y the metho(l of collocations, and the boundary  conditions for 
Z = 0 and Z -~ z~ were satisfied by choosing approt)riate l)asis fimctions. 

4. N u m e r i c a l  R e s u l t s  a n d  Ana lys i s .  To study the efiect of tim I)osition of the initial cross section 

of the solution obtained, we calculated the evolution of perturl)ations for wtrious values of X0. It was found 
that  the solution (lepends on X0 for X0 ~> 10- l ,  and only for X0 decreasing to approximately  10 -5 do the 

results become independent of X0 and remain constant with an error greater than  0.1%. Tim convergence of 
the solution with decreasing X0 and the coincidence of the nunmrical solution with the analytical Olm (2.9) 
for X0 ~ 10 -5 indicate that  the fornmlation of the problem is not contra(lictory and evidence indirectly the 

credibili ty of the numerical method used. 
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The  solution for U obtained for X0 ~< 10 -.5 is plot ted in Figs. 3 and 4. The results for the velocity 
components V and W are of no interest, since they are negligibly small as compared to U for X ~ 1. The 
solid curve in Fig. 3 shows tim dependence of the maximum (in terms of Z) perturbat ion Umax on X. For 
X ~ 10 -3, velocity per turbat ions  increase almost linearly in accordance with the solution for X << 1 (2.7) for 
which the dependence of  Umax oll X is shown by the dashed curve. The perturbations reach a maxinmnl at 
X -~ 0.02 and then decay. A similar behavior  of perturbations generated by streamwise vortices was obtained 

in [3, 4]. 
The  profiles of the  streafiiwise component  of velocity perturbations along the vertical coordinate for 

X = 10 -5, 0.02, and 0.08 are plotted in Fig. 4. For convenience of comparison of the profiles with each other 
and with the exper imental  data of [6], they are plotted vers~m tlm coordinate '~ -- Z/v/-X. It is seen from 
Fig. 4 tha t  the nmximum of velocity per turbat ions  is gradually shifted away from the wall with distance from 
the leading edge. The  change in the shape of the profile up to the cross section X = 0.02 corresponding to the 
nmxinmm per turbat ions  over the length is comparatively small, but it becomes significant at large distances 
from the leading edge where the per turbat ions decay. Ttm profile of the low-frequency oscillations of velocity 
(u' / in the boundary  layer in the case of an elevated level of free-stream turbulence, which was measured by 
Westin et al. [6], a lmost  coincides with the velocity profiles of gTowing perturbations for X = 10 -.5 and 0.02. 
The profile of velocity perturbations coinckling with the experimental oim w~ts also obtained in calculation 
of the evolution of per turbat ions generated by streamwise vortices in [3, 4]. This circnmstance allows us 
to assume that  the reason for increasing oscillatious in the boundary la.~r may be both streamwise and 

perpendicular to the leading-edge vortices in the free stream. 
To clarify the dependence of the solution obtaiued on the main parameters, we rewrite the expression 

for u (2.2) in the dimensional form: 

u = (27r/a) Reb ln(b'/A') U((6'/A') ~, z'/A'). (4.1) 

Here 6' = x /~x ' /u~  is the boundary-layer thickness at a distance x' from the leading edge and Reb = u~b'/u'. 
It follows from Eq. (4.1) tha t  the nmximum value of perturbations in the boundary laver 'u,,,~• (with accuracy 
to the logarithmic te rm)  is indepen(tent of their transverse size ,V and is determined by the expression 

'um~ --~ (0.055/a)Re~ In (b'/A'). (4.2) 

The  distance "~ xma x at which the nmximum of perturbations is reached is proportional to their period 

squared: 
) ( I ,'~ , .' (4.3) 

: I  Ill~'g X 

It also ibllows from (4.1) that the transverse period of t)erturbations A', which are amplified to the 
greatest extent  by a given (:ross section x% is 1),'oportional (with accuracy to the logarithmic term) to the 

boundary-layer thickness in this cross section: 

/~tma x "~ ~ .0 '7(~ ' (~  "~- O ( 1 / I n  (b'/A'))). (4.4) 
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The corollaries of the resultant solutions (4.3) and (4.4) correspond to the da ta  of tile experiment [6] 
and theory [3, 4] on amplification of quasi-steady vortices in the boundary laver on a flat plate with a sharp 
leading edae. In [6], the  estimate of the period of the streaky structure has the form A' -~ 96 ~, and in 
[4] tim l 'erturbations amplified to tile greatest extent have the period A' _~ 13(Y, which (lifters from (4.4) 
insignificant]v. An expression for the distance x',,ax sinfilar to (4.3) is obtained from the results of [4]. 

Nevert lmless, the conclusion that the mmximum amplification of perturbations is independent of their 
period [see (4.2)] is significantly different from the known results for the boundary layer on a fiat plate 
with a sharp leading edge. According to [4], we have Un,~x ~" Re ~ u~A'/u' .  A similar conclusion may be 
drawn from the experimental  data of [6], if we take into account that  the amplitude of velocity oscillations 
is 'um~ ~ -,0 ( u ~ x ' / v ' )  1/2 and their period is .X' ,-  5' ,,0 ( v ' x ' / u ~ )  I/2. The reason for this difference 
is the additional amplification of perturbations on the blunted leading edge owing to the deformation of the 
vorticity field in the flow past the leading edge. Indeed, in the case of interaction of flow nonuniformity with 
tim leading edge, a transverse velocity arises at the edge of the boundary layer. This velocity exceeds the 
initial amplitude of nonunifornfity by A ~ (b'/A') In (b'/A') times. As a result, a perturbation with transverse 
and vertical components of velocity appears at the initial section of the boundary layer and above it. As 
is shown by Andersson et  al. [4], the developnmnt of this kind of perturbations leads to their subseqlmnt 
transh)rmation into perturbat ions containing only the streamwise coml)onent of velocity, and the amplitude 
of the latter increases to a value which is greater than the initial one by Re times. A similar process of 
disturbance evolution in the boundary layer is described by the nunmrical solution in region II obtained in 
the present work. The product  of the disturbance-amplification factors in the flow t)ast the leading edge A 
and in the 1)oundary layer Re yields the total  amplification by Reb In (b'/)() times in accordance with (4.2). 
Since the aml)lification of perturt)ations at the leading edge is inversely prol)ortional to their period and that 
in the boundary layer  is directly proportional to the period, the total amplification is independent of the 
magnitude of perturbations.  

The results obtained allow one to predict the sl)ecial features of the laminar-turbulent transition on 
bodies with a l)hmted leading e(lg6 in the case of an elevated level of ff~-stream turbulence. The amplitude 
of oscillations in the boundary  layer on such bodies should be ahnost constant over their length, but their 
transverse size, as on a fiat plate with a shar I) leading edge, should increase with distance from the leading 
edge. This character of disturbance evolution allows us to assume that flow turbulization on blunted bodies 
occurs either in the immeciiate vicinity of the leading edge or, if the level of flow turhulence is not sufficiently 
large, very far fi'om the leading edge due to other nmchanisms of disturbance gTowth. The amplification 
factor of vortex per turbat ions on t)hmted bodies is greater than on a fiat plate with a sharp leading edge by 
a factor of l / / ) (  or Reb/Rv/-~x,  and the transition on them should occur at lower frese-, stream turbulence than 
in experiments such ms in [6]. Since the elements of constructions of flying vehicles (turbine blades, wings, 
fins) have generally blunted leading edges, this conclusion is important for determining the position of the 
huninar-turbulent t ransi t ion in practice. For example, the amplification factor on a wing of a cargo t)lane 
with a leading-edge bluntness of b' ~ '0 .1  m and a flight velocity of u "  ~ 200 m/sec is roughly equal to 
105 in accordance with (4.2), and the laminar-turbulent  transition should be observed for an amplitude of 
nonunifornfity of the flow profile of f ~ 10 -6. Though the fraction of perturbations of the type of transverse 
nonuniformity of the velocity profile in an actual turl)ulent flow is unknown, we m~\v assmne that their 
characteristic aml)litude ~ varies 1)etween 0.1 and 0.01 of the turbulence level ~t- Hence. the transition on 
the wing should occur at  a level of turl)ulence et ~ 0.01-0.001%, which is lower than in a tow-turbulent wind 
tunnel an(l, possibl3, corresponds to actual flight conditions. 
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